Banner Banner

Dr. Thorsten Eisenhofer

© Thorsten Eisenhofer

Dr. Thorsten Eisenhofer

Jonas Möller, Lukas Pirch, Felix Weissberg, Sebastian Baunsgaard, Thorsten Eisenhofer, Konrad Rieck

Adversarial Inputs for Linear Algebra Backends

July 13, 2025
https://www.mlsec.org/docs/2025-icml.pdf

David Beste, Grégoire Menguy, Hossein Hajipour, Mario Fritz, Antonio Emanuele Cinà, Sébastien Bardin, Thorsten Holz, Thorsten Eisenhofer & Lea Schönherr

Exploring the Potential of LLMs for Code Deobfuscation

July 10, 2025
https://doi.org/10.1007/978-3-031-97620-9_15

Roei Schuster, Jin Peng Zhou, Thorsten Eisenhofer, Paul Grubbs, Nicolas Papernot

Learned-Database Systems Security

July 02, 2025
https://doi.org/10.48550/arXiv.2212.10318

Felix Weissberg, Thorsten Eisenhofer, Jan Malte Hilgefort, Martin Eisemann, Steve Grogorick, Daniel Arp, Konrad Rieck

Seeing Through: Analyzing and Attacking Virtual Backgrounds in Video Calls

2025
https://mlsec.org/docs/2025-sec.pdf

News
BIFOLD Update| Apr 09, 2025

IEEE SaTML 2025 Conference Contribution

Dr. Thorsten Eisenhofer will present the paper “Verifiable and Provably Secure Machine Unlearning,” at SaTML 2025. Eisenhofer is Postdoc in the research group “Machine Learning and Security”. His paper introduces a new framework designed to verify that user data has been correctly deleted from machine learning models, supported by cryptographic proofs.