Banner Banner



© private
Prof. Dr. Wojciech Samek
March 10, 2021

Making the use of AI systems safe

BIFOLD Fellow Dr. Wojciech Samek and Luis Oala (Fraunhofer Heinrich Hertz Institute) together with Jan Macdonald and Maximilian März (TU Berlin) were honored with the award for “best scientific contribution” at this year’s medical imaging conference BVM. Their paper “Interval Neural Networks as Instability Detectors for Image Reconstructions” demonstrates how uncertainty quantification can be used to detect errors in deep learning models.

March 09, 2021

KI in der Medizin muss erklärbar sein

Wissenschaftler*innen der TU Berlin und der Charité – Universitätsmedizin Berlin sowie der Universität Oslo haben ein neues Analyse-System für die Brustkrebsdiagnostik anhand von Gewebeschnitten entwickelt, das auf Künstlicher Intelligenz (KI) beruht. Zwei Weiterentwicklungen machen das System einzigartig: Zum einen integriert es erstmals morphologische, molekulare und histologische Daten in einer Auswertung. Zum zweiten liefert es eine Erklärung des KI-Entscheidungsprozesses in Form von sogenannten Heatmaps mit. Diese Heatmaps zeigen Pixel für Pixel welche Bildinformation wie stark zu dem KI-Entscheidungsprozess beigetragen hat. Dadurch können die Mediziner*innen das Ergebnis der KI-Analyse nachvollziehen und auf Plausibilität prüfen. Künstliche Intelligenz wird damit erklärbar – ein entscheidender und unabdingbarer Schritt nach vorn, will man KI-Systeme künftig im Klinik-Alltag zur Unterstützung der Medizin einsetzen. Die Forschungsergebnisse wurden jetzt in Nature Machine Intelligence veröffentlicht.

© Grégoire Montavon
Dr. Grégoire Montavon with the 2020 Pattern Recognition Best Paper Award in hand.
February 23, 2021

2020 pattern recognition best paper award

A team of scientists from TU Berlin, Fraunhofer Heinrich Hertz Institute (HHI) and University of Oslo has jointly received the 2020 “Pattern Recognition Best Paper Award” and “Pattern Recognition Medal” of the international scientific journal Pattern Recognition. The award committee honored the publication “Explaining Nonlinear Classification Decisions with Deep Taylor Decomposition” by Dr. Grégoire Montavon and Prof. Dr. Klaus-Robert Müller from TU Berlin, Prof. Dr. Alexander Binder from University of Oslo, as well as Dr. Wojciech Samek and Dr. Sebastian Lapuschkin from HHI.

©: TU Berlin/Christian Kielmann
Dr. Samek (l.) and Prof. Müller in front of an XAI demonstrator at Fraunhofer HHI.
February 05, 2021

BIFOLD fellow Dr. Wojciech Samek heads newly established AI research department at Fraunhofer HHI

The Fraunhofer Heinrich Hertz Institute (HHI) has established a new research department dedicated to “Artificial Intelligence”. The AI expert and BIFOLD Fellow Dr. Wojciech Samek, previously leading the research group “Machine Learning” at Fraunhofer HHI, will head the new department. With this move Fraunhofer HHI aims at expanding the transfer of its AI research on topics such as Explainable AI and neural network compression to the industry.

©: TU Berlin /PR/Simon
Prof. Dr. Volker Markl
January 15, 2021

BIFOLD Co-Director Prof. Volker Markl named 2020 ACM fellow

The Association for Computing Machinery (ACM), the largest and oldest international association of computer scientists, has named Prof. Dr. Volker Markl, Co-Director of the Berlin Institute for the Foundations of Learning and Data (BIFOLD), as ACM Fellow 2020. Volker Markl received this distinction for his contributions to query optimization, scalable data processing and data programmability. He is one of 22 German scientists who have been honored by the ACM so far.

January 13, 2021

BIFOLD research into ML for molecular simulation is among the 2020 most downloaded annual reviews articles

The paper “Machine Learning for Molecular Simulation” by BIFOLD Co-Director Prof. Dr. Klaus-Robert Müller, Principal Investigator Prof. Dr. Frank Noé and colleagues was among the top 10 most downloaded physical science articles of Annual Reviews in 2020.

January 12, 2021

Resilient data management for the internet of moving things: TU Berlin and DFKI paper was accepted at BTW 2021

The paper “Towards Resilient Data Management for the Internet of Moving Things” by Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou and Volker Markl was accepted for presentation at the 19. Fachtagung für Datenbanksysteme für Business, Technologie und Web (BTW 2021) on September 20 – 24, 2021. Following the acceptance of a paper on fast CSV loading using GPUS, this is the second paper by researchers from the Database Systems and Information Management (DIMA) group at TU Berlin and the Intelligent Analytics for Massive Data (IAM) group at DFKI that will be presented at BTW 2021.

January 05, 2021

TU Berlin, DFKI and NUS paper on parallelizing intra-window join on multicores was accepted at SIGMOD 2021

The paper “Parallelizing Intra-Window Join on Multicores: An Experimental Study” by researchers from TU Berlin, DFKI, National University of Singapore and ByteDance was accepted for presentation at the ACM SIGMOD/PODS International Conference on Management of Data (SIGMOD/PODS 2021), which will take place from June 20 – 25, 2021 in Xi’an, China. This is the first comprehensive study on this topic.

December 29, 2020

Researchers at FU Berlin solve Schroedingers equation with new deep learning method

BIFOLD Principal Investigator Prof. Dr. Frank Noé and Senior Researcher Dr. Jan Hermann of the Artificial Intelligence for the Sciences group at Freie Universität Berlin developed a new, exceptionally accurate and efficient method to solve the electronic Schroedinger equation. Their approach could have a significant impact on the future of quantum chemistry.

© G. Sumbul, M. Charfuelan, B. Demir, V. Markl
December 28, 2020

The BigEarthNet archive now contains Sentinel-1 satellite images

The satellite image benchmark archive BigEarthNet, developed by the Remote Sensing Image Analysis (RSIM) and Database Systems and Information Management (DIMA) groups at TU Berlin, has been enriched by Sentinel-1 image patches. This enhances its potential for deep learning with geo data.