Banner Banner

AudioMNIST: Exploring Explainable Artificial Intelligence for audio analysis on a simple benchmark

Sören Becker
Johanna Vielhaben
Marcel Ackermann
Klaus-Robert Müller
Sebastian Lapuschkin
Wojciech Samek

December 19, 2023

Explainable Artificial Intelligence (XAI) is targeted at understanding how models perform feature selection and derive their classification decisions. This paper explores post-hoc explanations for deep neural networks in the audio domain. Notably, we present a novel Open Source audio dataset consisting of 30,000 audio samples of English spoken digits which we use for classification tasks on spoken digits and speakers’ biological sex. We use the popular XAI technique Layer-wise Relevance Propagation LRP to identify relevant features for two neural network architectures that process either waveform or spectrogram representations of the data. Based on the relevance scores obtained from LRP, hypotheses about the neural networks’ feature selection are derived and subsequently tested through systematic manipulations of the input data. Further, we take a step beyond visual explanations and introduce audible heatmaps. We demonstrate the superior interpretability of audible explanations over visual ones in a human user study.