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ABSTRACT

Responsible usage of Machine Learning (ML) systems in practice
does not only require enforcing high prediction quality, but also
accounting for other constraints, such as fairness, privacy, or exe-
cution time. One way to address multiple user-specified constraints
on ML systems is feature selection. Yet, optimizing feature selec-
tion strategies for multiple metrics is difficult to implement and
has been underrepresented in previous experimental studies. Here,
we propose Declarative Feature Selection (DFS) to simplify the de-
sign and validation of ML systems satisfying diverse user-specified
constraints. We benchmark and evaluate a representative series
of feature selection algorithms. From our extensive experimental
results, we derive concrete suggestions on when to use which strat-
egy and show that a meta-learning-driven optimizer can accurately
predict the right strategy for an ML task at hand. These results
demonstrate that feature selection can help to build ML systems
that meet combinations of user-specified constraints, independent
of the ML methods used.

1 INTRODUCTION

Many modern software systems rely on Machine Learning (ML)
components for automated decision making [9, 10, 16, 23, 31, 33,
60, 61, 69, 72]. Especially when used in production software sys-
tems, maintaining and monitoring ML components is important to
ensure reliable predictions. A central challenge in this context is
the validation of certain data properties, especially those that are
due to data transformations induced by an ML model. Examples of
such properties are the differential privacy or fairness of ML model
predictions. Violating these constraints in production systems can
have devastating consequences. But automatically enforcing these
constraints is challenging. Many approaches in the ML literature
focus on adapting specific models to specific constraints. For in-
stance, Donini et al. propose a general framework for empirical
risk minimization under fairness constraints [18]. And McSherry
et al. introduce differential privacy for a recommender system [39].
Both examples enforce privacy and fairness by building dedicated
models. Yet, when building a production system, it is often difficult
to enforce these or other constraints by simply exchanging a model.
One reason is that adding a new constraint or combining multiple
constraints would require developing a new model. Another line
of work used preprocessing and model hyperparameter optimiza-
tion (HPO) to satisfy fairness constraints [52, 57]. Alternatively,
such constraints can be enforced by restricting the features used by
the ML component. Violations of fairness or privacy constraints are
often due to just a small fraction of features. Determining them inde-
pendently of an ML task is not always possible. But when removing
them from the training data set, any downstream ML model can be
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Figure 1: Accuracy trade-off with three nonfunctional met-

rics for LR, NB, and DT on the COMPAS dataset. Each dot

corresponds to results with a different feature subset.

forced to meet a given level of privacy or fairness. Hence, feature
selection (FS) can be considered an attractive model-agnostic alter-
native to model-specific solutions for each individual constraint.
Inspired by Perrone et al. [52], Figure 1 illustrates that, across mod-
els, FS affects the trade-off of accuracy with the fairness metric
equal opportunity (EO) [29], feature set size, and safety levels. Each
dot in this figure corresponds to a feature subset of the COMPAS
dataset [35]. The charts show that independent of the model, one
can achieve very different trade-offs of accuracy with metrics, such
as EO [29] and safety against adversarial examples [15, 47], by just
changing the original feature set.

FS [17, 37, 41, 71] has been widely studied to address the curse
of dimensionality, avoid overfitting, and accelerate training/pre-
diction while reducing the memory footprint [27]. Therefore, 78%
of all 1, 233, 841 Scikit-learn [51] pipeline runs in the open science
platform OpenML [67] employ FS. Yet, the way FS is built into these
ML pipelines renders it difficult to leverage FS for enforcing the
above constraints automatically. Most ML libraries and database
research on feature engineering [2–4, 30, 34, 44, 74] only support
optimization of a single objective, i.e., prediction performance in
terms of classification or regression losses.

In this study, we argue that decoupling the constraint validation
from the ML component has decisive advantages for automated
training, validation, and monitoring of software systems featuring
ML components. We propose Declarative Feature Selection (Dfs)
as a model-agnostic approach to validation of ML components for
user-specified constraints. One main advantage of Dfs is that it
is more convenient to use than building a novel ML model for
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each constraint, as proposed by Donini et al. [18, 39]. Lowering
the adoption threshold of systems that allow for more responsible
usage of ML systems is a crucial requirement for addressing the
ethical challenges that we are facing as a scientific community and
as a society in general, as highlighted by Bender et al. [6]. Further,
we also argue that the modularity of the proposed system, meaning
enforcing constraints on ML systems by focusing on the features
ingested by an ML system, has decisive advantages for the technical
debt and maintenance cost of ML systems: Our approach allows
to conveniently exchange the ML model component while being
compliant with the constraints enforced via FS. We demonstrate the
efficacy of this approach and the transferability of constraints across
different model classes in a comprehensive suite of experiments.

Considering the large number of existing FS strategies, choosing
the fastest and most useful strategy for the aforementioned opti-
mization goals is not trivial. For instance, it is not clear whether
FS strategies that optimize accuracy, such as the 𝜒2-based rank-
ing [38], are suited to find feature subsets that satisfy constraints
such as safety against adversarial attacks and fairness. Another
open question is whether strategies that consider a smaller search
space, such as ranking-based approaches, are suitable for as many
ML scenarios as strategies that consider a larger search space of
feature subsets, such as sequential selection approaches [1, 28]. To
develop a generic DFS approach applicable to a diverse set of con-
straints, we conducted a systematic evaluation of FS strategies. To
this end, we had to overcome three general challenges:
(1) Diverse FS metrics. To the best of our knowledge, no FS strat-

egy was evaluated across a diverse metric set that goes be-
yond accuracy and runtime. Especially, competing metrics, e.g.,
greater privacy often leads to lower accuracy, aggravate this
challenge.

(2) Choice of constraint sets. Each constraint refers to a thresh-
old for a specific metric, such as EO > 90%. For each FS task,
there is a set of constraints, each with an infinite space for
possible thresholds. In the absence of established benchmarks,
which exist for database research in the framework of TPC [64],
we had to model our experiments in a way that captures a wide
range of constraint sets on a diverse set of datasets.

(3) Algorithm adaptation. For each selected algorithm, we had
to adapt it to the use case of Dfs.

Contributions. We conduct a comprehensive evaluation of 16 FS
strategies on 19 binary classification tasks each with a single binary
protected attribute from the OpenML platform [67]. Our results
indicate which strategy is best suited for which ML scenario. We
refer to the fraction of ML scenarios where an FS strategy found a
feature set that satisfies all constraints as the coverage. Furthermore,
we explore under which circumstances a strategy yields the solution
the fastest. Finally, we investigate to what extent it is possible to
learn the applicability of an FS algorithm. To this end, make the
following contributions:
• We classify 16 FS strategies in the context of Dfs and provide a
taxonomy for ML application constraints.
• We run extensive experiments with the strategies on different
datasets and evaluate both search time and coverage. We explore
3318 combinations of 6 ML application constraints, 3 classifica-
tion models, and 19 datasets.

• From our experimental results, we derive concrete suggestions
on when to use which strategy and test a meta-learning-driven
Dfs optimizer that automatically makes this decision depending
on the user-specified constraints and the dataset at hand. We
also provide all implementations, datasets, and the evaluation
framework in our repository [45].

Main Findings. Our study lets us draw the following conclusions:
• Dfs is a promising framework to enforce a wide range of ML
application constraints transparently for the user and avoids
heavy ML engineering for constraint-specific models. Further,
the user can add, remove, or modify constraints declaratively
without engineering. As FS is orthogonal to modeling, one can
also combine Dfs and constraint-specific models if required. We
also show that, in many cases, the constraints still hold after
switching to another ML model.
• Sequential forward selection is well-suited for the scenario of
Dfs because most constraints limit the size of satisfying feature
sets and these strategies can quickly find features for small sets.
• Ranking-based FS strategies that were mostly designed for accu-
racy perform well if the metric favors reduction and compression
of the feature vector. This is the case for metrics, such as com-
plexity, privacy, and safety. However, if the metric requires the
selection strategy to prune specific features that are unrelated to
accuracy, such as biased features in the case of fairness, accuracy-
optimized rankings fail for high thresholds and we need to resort
to strategies that consider a larger search space, such as forward
selection or multi-objective NSGA-II [71].
• Our benchmark shows that the performance of FS strategies is
highly dependent on the constraints, the dataset, and the classifi-
cationmodel. This findingmotivated us to leveragemeta-learning
to predict the most promising FS strategy for a given ML scenario.
This Dfs optimizer has a 10% higher coverage on average than
the best individual FS approach and achieves consistently good
coverage leading to 4% less standard deviation.
• If the user has more computing resources, one can improve the
coverage by running multiple strategies in parallel. By running
only 5 strategies in parallel, we achieve already 94% coverage
or receive in 52% of the cases the fastest result depending on
whether we optimize for coverage or speed.

2 DECLARATIVE FEATURE SELECTION

We first formally define the problem of Dfs. Then, we describe its
general workflow.

2.1 Problem Statement

We formulate the problem of Dfs as follows: A user specifies the ML
scenario 𝑍 as the tuple (𝜙, 𝐷, 𝐷train, 𝐷val, 𝐷test,𝐶) that comprises
the ML classification model 𝜙 , the dataset 𝐷 , the strategy how to
split the data into a training set 𝐷train, validation set 𝐷val, and test
set 𝐷test, and the set of ML application constraints 𝐶 = {𝑐1, ..., 𝑐𝑀 }.
The dataset 𝐷 comprises the feature set 𝐹 = {𝑓1, ..., 𝑓𝑁 } and the
prediction target 𝑡 . Here, we focus on binary classification. A feature
subset 𝐹 ′ satisfies an ML scenario 𝑍 if no user-specified constraint
𝑐𝑚 ∈ 𝐶 is violated. The goal of an FS strategy 𝑠 is to find one feature
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subset 𝐹 ′ ⊆ 𝐹 that satisfies the user-specified ML scenario 𝑍 :

𝑠 (𝑍 ) =
{
𝐹 ′, if a 𝑍 -satisfiable 𝐹 ′ exists
∅, otherwise.

In this paper, we limit our problem to finding a feature set that
satisfies all user-specified constraints instead of finding all Pareto-
optimal feature sets because the latter requires significantly higher
computation time. Alternatively, in addition to satisfying all speci-
fied constraints, we can extend the problem statement by allowing
for maximizing specified utilities subject to specified constraints.
We evaluate both cases in our experiments.

ML Application Constraints
Accuracy > 80% and EO(Gender) > 90% 

Training Data

Education Gender Experience Race

Features

Should we hire this applicant?

Target

ML Model: Logistic Regression

Input

Feature Selection 
Strategy

Feature Subset

Validation

Education Experience

Features

Output

Verification

Validation Data Test Data
Training

ML Model Hyperparameters: C = [0.1, 1, 10]

Hyperparameter 
Optimization

Figure 2: Dfs workflow.

2.2 Workflow

Figure 2 illustrates the workflow of a typical Dfs scenario. The data
scientist first specifies the ML task. This task includes the dataset
that contains the features and the classification target, and how
to split the data into training, validation, and test. Then, the ML
model is specified - here, LR. Finally, the scientist defines the ML
application constraints, which are described in Section 3.

Based on the user input, an FS strategy proposes a feature subset.
In Section 5, we explore a meta-learning-driven optimizer that
chooses the strategy that is most likely to satisfy the ML scenario
based on the experience of previous runs. Note that the optimizer
only chooses an FS strategy and does not automatically generate
a feature ranking. Then, the model is trained using the proposed
feature subset. If the user specified a model hyperparameter space,
optimization will be applied at this stage and returns the model that
yielded the best accuracy score for validation. If all constraints are
satisfied on the validation data, the feature subset is also evaluated
on the test data. If any constraint was not satisfied, the FS strategy
uses the validation loss to search for the next feature subset, as
described in Section 4.3. If all constraints are also satisfied on the
test data, the Dfs system was successful and returns the feature
subset to the user. Otherwise, Dfs was not successful.

3 ML APPLICATION CONSTRAINTS

There are many metrics proposed in the ML literature besides ac-
curacy, such as fairness [29], privacy [20], and robustness [26]. A
metric translates into a constraint as soon as a threshold is speci-
fied. To choose the right set of metrics, we tried to identify major
properties according to which we can distinguish constraint types

Table 1: Constraint taxonomy.

Constraint Evaluation #Feature Input
Dependence Dependence Features Target Model Predictions

Max Search Time None
Max Feature Set Size - - ✓
Max Training Time ✓ - -
Max Inference Time ✓ - -
Min Accuracy ✓ + ✓ ✓
Min Equal Opportunity ✓ - ✓ ✓ ✓
Min Privacy - -
Min Safety ✓ - - ✓ ✓ ✓ ✓

and select representative ones. A very recent survey [75] counts
the same set of metrics as properties that most ML applications are
tested on. While in this study, we limit the prototype to a selected
set of constraints, our framework is applicable to any metric that
produces a numeric score based on a dataset and an ML model.

In the taxonomy presented in Table 1, we identify three very
general characteristics that can serve in distinguishing ML con-
straints for FS: the evaluation dependency, the feature set size de-
pendency, and the required input. Constraints can be evaluation
dependent and evaluation independent. For example, one can only
verify whether an accuracy constraint is satisfied after training
a model and applying this model on the test set. Therefore, ac-
curacy is dependent on the evaluation. Accordingly, fairness and
safety against adversarial examples are evaluation dependent. On
the other hand, feature complexity, e.g. the number of features,
differential privacy, and the user-specified budgeted time for search
are independent of the evaluation. For example, if the user specifies
a maximum number of 5 features, one can immediately prune all
feature subsets with more than 5 features without evaluation.

Also, the correlation to the number of features differs across
constraints. Accuracy on average benefits from a higher number
of features. EO might negatively correlate because sensitive or bi-
ased features have to be removed. For safety against adversarial
examples, our empirical study shows a larger negative correlation
because the more features we use, the more options a potential
adversary has to fiddle with the feature vector. Finally, the compu-
tation of different constraints requires different inputs. For instance,
to identify whether a constraint that is based on feature complexity
is satisfied, we only have to count the number of features that are
present in the feature subset. Therefore, the features are the only
required input. To calculate accuracy-related constraints, one only
requires the target values and the model predictions. For fairness-
based constraints, we need the features in addition to all inputs
that were required for accuracy because we need to know which
instances belong to the minority group and which ones to the
majority group. For constraints that address the safety against ad-
versarial examples, we additionally need the corresponding trained
classification model because the robustness measures will query
the trained model for instances with modified feature values.

We selected eight metrics that cover different aspects of the
properties in Table 1. In the following, we describe how we measure
and implement each of them as constraints in our experiments.
Min Accuracy. The model accuracy denotes how accurately the
model can predict for a certain task. In this paper, we focus on binary
classification tasks. We use the F1 score on binary classification
tasks because it is robust against class imbalance.
Max Search Time specifies the maximum allowed time for FS.
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Max Feature Set Size. One way to measure the complexity of
a feature set is to count the number of its features. The number
of features could also be used as a proxy metric to measure in-
terpretability [53]. For example, a DT with 5 features is easier to
understand than one that uses 100 features.
Max Training / Inference Time. For fast iterative ML develop-
ment, the user might prefer models that train faster or, for real-time
ML applications, the user might prefer models that predict faster.
Given that the remaining ML pipeline does not change, for FS,
the training and inference time directly depends on the number
of features. We can easily learn this relationship and map this
evaluation-dependent constraint to an evaluation-independent con-
straint. This optimization reduces the search space and thereby can
accelerate the search. Since both Max Training / Inference Time
and Max Feature Set Size constraints are two approaches to limit
the number of features, we only evaluate the simpler approach Max
Feature Set Size in the experiments.
Min Fairness. In many cases, it is imperative to train a model
that avoids discriminating against any minority group, e.g. based
on sex, race, or religion [63]. Fairness is difficult to define and
there is no single metric that could capture all relevant aspects [43].
Developing measures for fairness is an active field of research.
The goal of our work is to empower researchers and engineers to
leverage the variety of existing fairness metrics. Fairness metrics,
such as equal opportunity [29], the generalized entropy index [62],
and the ratio of observational discrimination [56], have different
perspectives on fairness but require all the same inputs - the dataset
and the ML model. To exemplify how fairness can be embedded
as a constraint, we chose the very simple and well-known fairness
metric of equal opportunity (EO) [29] to measure fairness.

EO = 1 − |𝑃minority group (𝑌predicted = 1|𝑌 = 1)
−𝑃majority group (𝑌predicted = 1|𝑌 = 1) |

EO considers the predictions as fair if the true positive rates for
both the minority and the majority group are similar. Note that
simply removing the sensitive or protected feature, such as race, is
not enough to achieve fairness because other features might leak
information about the same feature [63]. For instance, Selbst [58]
showed that ZIP codes are a proxy for race in the U.S.
Min Privacy. With regulations, such as the General Data Pro-
tection Regulation (GDPR), the industry becomes more aware of
focusing on the privacy of customers. ML models could leak infor-
mation about customers whose data was used for model training. A
popular model to preserve privacy is to apply 𝜀-differential privacy
for a classifier 𝜙 [20]. Differential privacy applies random noise to
ensure that the publicly visible model predictions do not change
significantly if one entry in the dataset changes. The user specifies
𝜀 as the constraint. To incorporate 𝜀, one has to apply the differ-
ential private alternative of each ML model. For LR, we apply the
differentially private empirical risk minimization [13]. For NB, we
follow the approach of Vaidya et al. [66] and, for DT, we leverage
work by Fletcher et al. [24]. By parameterizing the differentially
private model with 𝜀 as a user constraint, one can expect that the
output is 𝜀-differential private.

Strategies

Single-Obj.

Exhaustive [17]

Sequential
Ranking [1, 28]
No Ranking (NR) [1, 54]

Randomized

Ranking

Similarity [19, 55]
Information [36, 73]
Sparse Learning [12]
Statistics [37, 38]

No Ranking (NR) [40, 70]
Multi-Obj. Randomized Search [70]

Figure 3: FS strategy taxonomy for Dfs.

Min Safety Against Adversarial Examples. Adversaries can
attack ML models. For instance, adversaries can adjust the fea-
tures of an instance in such a way that the instance is misclassi-
fied by the classifier. Again, there are many measures for safety
against adversarial examples. We apply the following empirical
robustness measure: For each test entry, we try to generate an
adversarial example using the well-known black-box evasion at-
tack HopSkipJump [15, 47]. Then, we compare the accuracy of the
original test set with the accuracy of the attacked test set [48]:
Safety = 1 − 𝐹1(Testoriginal) − 𝐹1(Testattacked).

For Dfs, the user could also use other safety metrics, such as the
clique method robustness [14], the cross Lipschitz extreme value
for network robustness score [68], and loss sensitivity [5]. They
all view robustness from a different angle but all require the same
inputs. For the experiments, we want to study whether different
FS strategies can satisfy the notion of safety against adversarial
examples. Therefore, we chose the very simple and straightforward
safety metric of empirical robustness.

4 FEATURE SELECTION

Wefirst describe a taxonomy of FS strategies from the perspective of
Dfs that guides to select the competing strategies. Then, we describe
each selected FS strategy that we evaluate in our experiments.

4.1 Feature Selection Taxonomy

FS has been surveyed from multiple perspectives. Molina et al. [41]
and Doak et al. [17] categorize FS strategies based on the search
algorithm and the evaluation function. Li et al. [37] categorize the
different feature ranking approaches into four categories: similarity-
based, information-theoretical-based, sparse-learning-based, and
statistical-basedmethods. Xue et al. [71] categorize the evolutionary
computation approaches and introduce the new categorization
dimension of the number of objectives because many evolutionary
algorithms support multi-objective optimization by design.

We adopt a taxonomy in Figure 3 that describes the strategies
from the perspective of Dfs. In this taxonomy, we classify FS strate-
gies based on the number of optimization objectives, the underlying
search algorithm, and whether they leverage a feature ranking. In
contrast to previous surveys, we do not differentiate the strategies
based on the evaluation function. For Dfs, we always have to eval-
uate the features based on the specified ML model - known as the
wrapper approach [32] - to ensure that all user-specified constraints
are satisfied. With the help of the taxonomy, we select the set of FS
strategies for our experimental evaluation. We choose at least one
FS strategy per taxonomy leaf for the experiments to get a broad
representative picture of the strategies’ performance for Dfs.
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In Figure 3, we first differentiate FS strategies by the number
of objectives that they optimize for. The user can specify a single
constraint, such as accuracy, or multiple constraints, e.g. EO > 0.9
and accuracy > 0.8. One approach is to consider satisfying each
constraint 𝑐𝑚 individually as one objective in a multi-objective
optimization problem. Another approach is to optimize how far
away the feature subset is from satisfying all constraints together
as one single aggregated objective.

Following previous surveys [17, 41], it is possible to then differ-
entiate the strategies with respect to the search algorithm that they
apply. Search can be exhaustive, sequential, and randomized.

In general, the task of searching for the optimal feature subset
is known to be NP-hard [27]. So, if we leverage exhaustive search,
assessing all possible feature subsets would require 2𝑁 evaluations
where 𝑁 is the number of features. For large feature sets, it is in-
tractable to use exhaustive search. Therefore, multiple heuristics
have been proposed. Doak categorizes these heuristic strategies
into sequential and randomized search strategies [17]. Sequential
search incrementally adds or removes features for one feature sub-
set. Randomized search picks features stochastically.

Sequential selection and single-objective randomized search can
be further divided into strategies that use a ranking and those that
do not (NR). For exhaustive search, one has to evaluate all possible
feature subsets. Therefore, ranking does not apply to this type of
strategies. For sequential search, recursive feature elimination [28]
leverages the model’s feature importance intuition as a ranking and
prunes at each step the most insignificant feature. For randomized
search, one can rank the features and pick the top-𝑘 . Randomized
searchwill identify the optimal𝑘 . There have been a large number of
rankings proposed that are based on similarity [19, 55], information
theory [36, 73], sparse learning [12, 49], and statistics [37, 38].

Similarity-based strategies assess feature importance by measur-
ing the distance between data instances. Information-theory-based
strategies leverage the notion of information that is shared between
the target and the features or among features. Sparse-learning-
based strategies aim to learn an ML model that yields high accuracy
while its weights are as sparse as possible. Finally, statistics-based
strategies leverage well-known statistical measures, such as the
variance [37] and the 𝜒2 score [38].

4.2 Feature Selection Strategies

We give a brief description of each FS strategy that we evaluate for
Dfs. For all strategies, we specify the ranking they use or whether
they use no ranking (NR).We can leverage all the described FS strate-
gies for Dfs because they all follow the wrapper approach [32].
Exhaustive Search - ES(NR). ES(NR) evaluates all possible feature
combinations.
Sequential Forward Selection - Sfs(NR). Sfs(NR) [1] starts with
an empty feature set and then adds in each round the feature that
benefits the current feature subset the most.
Sequential Backward Selection - Sbs(NR). In contrast to
Sfs(NR), Sbs(NR) [1] starts with the full set of features and re-
moves one feature per round to improve the feature subset. Both
approaches Sfs(NR) and Sbs(NR) have a complexity of 𝑂 (𝑁 2).
Sequential Forward Floating Selection - Sffs(NR). If it turns
out that adding or removing a feature was a mistake, Pudil et al. [54]

extend the sequential selection algorithms with floating. For for-
ward selection, floating checks after adding a new feature whether
removing any feature from the current set is beneficial.
Sequential Backward Floating Selection - Sbfs(NR). For back-
ward selection, the floating approach of Sbs(NR) would try to add
back previously removed features [54].
Recursive Feature Elimination - Rfe(Model). Rfe(Model) is
another well-known sequential selection strategy [28]. It uses back-
ward selection but instead of choosing the feature that should be
removed, using the wrapper approach, it leverages a feature rank-
ing function, e.g., the feature importance scores of the classification
model at hand. If the classification model does not provide feature
importance scores, we estimate these scores using the permutation
importance [11]. Another way to leverage rankings for FS is to
pick the top-k features. Approaches based on the second category
randomized search, better known as HPO, find the optimal value
for k. We choose the well-known tree-structured Parzen estimator
approach (Tpe)[7] for this task. To reduce the computation, we
compute each ranking only once in the first round of HPO.
Top-k ReliefF Selection - Tpe(ReliefF). The main idea of
similarity-based Relief algorithms is to choose a random instance
and find its nearest neighbor with the same class (near hit) and its
nearest neighbor with a different class (near miss). Based on these
neighbors, one can incrementally compute a feature ranking by
continuously drawing new instances. ReliefF [55] extends this idea
by selecting the k-nearest neighbors instead of only one.
Top-k Fisher Score Selection - Tpe(Fisher). The Fisher score
ranking [19] also ranks features in a way that feature values of
instances of the same class are similar while feature values of in-
stances of the different classes are dissimilar. This way, the features
with the highest Fisher score are ranked highest.
Top-k Mutual Information Maximization Selection -

Tpe(Mim). Information-theory-based Mim [36] ranks a feature X
based on how much information it shares with the target Y by
calculating the mutual information. Mim does not prune redundant
features because it assumes that features are independent.
Top-k Fast Correlation-Based Filtering - Tpe(Fcbf).

Information-theory-based Fcbf [73] considers both feature-
target correlations and feature-feature correlations. Fcbf
compensates for mutual information’s bias towards features with
more values by computing the symmetrical uncertainty (SU) [73].
Top-kMulti-Cluster FS - Tpe(Mcfs). The sparse-learning-based
Mcfs [12] does not require class labels and tries to compress the
data by selecting as few features as possible while maintaining
the local geometric structure. First, it transforms the data into a
𝐾-dimensional spectral embedding 𝑒1, ..., 𝑒𝑘 [46]. Then, it considers
each of the resulting 𝑘 dimensions as a target and the original data
as the features. This way, one can formulate it as 𝐾 regression tasks.
Top-kVariance Selection - Tpe(Variance). The intuition behind
the statistics-based strategy Tpe(Variance) is that features with low
variance contain less information [37] and therefore, are less likely
to help to differentiate between different classes.
Top-k 𝜒2 Score Selection - Tpe(𝜒2). The ranking that uses the
𝜒2 score tests whether the feature 𝑓 is independent of the class
label [38]. Higher 𝜒2 score signalizes higher feature importance.
Simulated Annealing - SA(NR). To use randomized search with-
out feature ranking, one can consider each decision whether to use
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a feature as a binary variable where 1 corresponds to select a feature
and 0 to not select it. For instance, the binary vector 𝑏 = (0, 1, 1)
corresponds to the decision to prune the first feature of a 3-feature
subset. Therefore, the optimization goal is to find the binary vec-
tor 𝑏 that optimizes a given objective. To solve this optimization
problem, we can leverage simulated annealing [17].
Tree-Structured Parzen Estimator - Tpe(NR).We can solve the
same optimization problem of SA(NR) also with the well-known
HPO tree-structured Parzen estimator approach [7].
Nondominated Sorting Genetic Algorithm II - NSGA-II(NR).

For multiple objectives, Xue et al. [71] follow the same optimization
approach as SA(NR) and Tpe(NR) but instead of finding the best fea-
ture subset for one objective, they want it to be optimal across mul-
tiple objectives. Evolutionary algorithms, such as the well-known
nondominated sorting genetic algorithm II (NSGA-II) [71], repre-
sent one of the most well-known optimization algorithm families.
Therefore, we treat each constraint as one objective. For instance,
the constraint set accuracy > 80% and EO > 90% is translated into
two objectives: one for accuracy and one for fairness.

4.3 Guiding FS to Satisfy Constraints

To enable the single-objective strategies to find feature sets that
satisfy multiple constraints, we aggregate the distance to each con-
straint threshold in a single objective function. Our goal is to mini-
mize the overall distance across all constraints. Therefore, we sum
up the squared distance of each achieved validation score 𝛿𝑚 to its
corresponding constraint threshold:

distance =
𝑀∑

𝑚=1

{
0, if 𝑐𝑚 is satisfied
(𝛿𝑚 − 𝑐𝑚)2, otherwise. (1)

So, instead of optimizing for classification accuracy, we optimize for
minimal distance to satisfy the constraints. We treat all constraints
equally because all constraints can take values between 0 and 1
and all constraints should be satisfied equally in the end. Note that
differential privacy constraints are already satisfied before optimiza-
tion and are therefore not part of the optimization. If the user wants
to maximize utility, e.g., accuracy, subject to specified constraints
being met, we extend the objective function of Equation 1:

objective =

{
distance, if distance > 0∑𝑁

𝑛=1 −𝑢𝑛, otherwise. (2)

Once all constraints 𝑐𝑚 are satisfied (distance = 0), we continue
the optimization by minimizing the sum over all defined negative
utilities until the maximum search time is reached.

5 DFS OPTIMIZER

Given the set of FS strategies, there is a selection problem for a
given dataset, a given classification model, and a set of desired
constraints. One simple option would be to always propose the FS
strategy that was the fastest or satisfied the most constraint sets on
a large number of benchmark tasks. However, as the experiments
show, there is no one-size-fits-all FS strategy that is always the
fastest or can satisfy all possible constraint sets. Therefore, we
explored the possibility for a Dfs optimizer based on meta-learning
that predicts the FS strategy that is the most likely to satisfy the
user-specified constraints - the query.

The main requirements for such an optimizer are the following:
First, it should identify a promising FS strategywithout testing them
on the given dataset. Second, the optimizer should consider the
user-specified constraints and should be easily extensible to more
constraints and more FS strategies. To accommodate the above-
mentioned requirements, we have to design a classification task
that can convert the accessible information of an ML scenario into
a feature representation and obtain the necessary training data. To
the best of our knowledge, the Dfs optimizer is the first technical
solution to accommodate the aforementioned requirements and
challenges to automatically choose the proper FS algorithm for a
given ML scenario.

Algorithm 1 Dfs Optimizer
Training Phase

Input: datasets D,models Φ, hyperparameters𝐻 , FS strategies 𝑆 , constraints𝐶, iterations 𝐼 .
Output: model𝑠 .
1: 𝑋 ← []
2: for 𝑖 ← 0 to 𝐼 do
3: 𝐷,𝜙,𝐶′ ← sample(D,Φ,𝐶)
4: 𝑋 ← 𝑋 ∪ featurize(𝐷,𝜙,𝐶′)
5: for 𝑠 𝑖𝑛 𝑆 do

6: 𝑦𝑠 ← 𝑦𝑠 ∪ strategy_satisfies(𝑠, 𝐷,𝜙,𝐶′, 𝐻 )
7: for 𝑠 𝑖𝑛 𝑆 do

8: model𝑠 ← fit(𝑋, 𝑦𝑠 )
Deployment Phase

Input: dataset 𝐷,model 𝜙, constraints𝐶.

Output: feature selection strategy 𝑠̃ .
9: 𝑥 ← featurize(𝐷,𝜙,𝐶)
10: 𝑠̃ ← argmax𝑠 model𝑠 .predict_proba(𝑥)

5.1 Algorithm Overview

We formulate the meta-learning problem as a multi-label binary
classification task where we predict for each strategy whether it
can satisfy a given ML scenario or not. Algorithm 1 describes how
Dfs Optimizer is trained and deployed. In the training phase, we
train one model for each strategy to estimate the probability of the
corresponding strategy to satisfy the ML scenario. For this purpose,
previously deployed ML scenarios can serve as training data. From
each scenario, we have access to the constraints, models with their
optimized hyperparameters, and datasets, to extract features. In
absence of such training data, we can automatically generate the
training data as depicted in Algorithm 1. For the specified number
of iterations 𝐼 , which bounds the sample size, we sample an ML
scenario (a dataset 𝐷 , a model 𝜙 , a constraint set 𝐶) and verify for
each FS strategy 𝑠 whether it can satisfy the scenario or not. Based
on these evaluations, we create a training dataset that includes the
observations𝑋 , consisting of the features for each ML scenario that
we describe in more detail in Section 5.2, and the target 𝑦𝑠 , which
describes for each ML scenario whether strategy 𝑠 could satisfy it.

We use the training dataset to train one model per FS strategy
to estimate the probability of the corresponding strategy to satisfy
the ML scenario. In the deployment phase, the Dfs Optimizer then
estimates for each strategy 𝑠 the probability of success on a user-
provided ML scenario (a dataset 𝐷 , a model 𝜙 , a constraint set 𝐶)
and chooses the strategy with the highest probability.
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5.2 ML Scenario Representation

To enable the aforementioned approach, we need a feature vector
that covers four components: the dataset at hand, the classification
model, the constraints, and the potential hardness of the constraints:

𝜌 (𝐷,𝜙,𝐶) = [𝜌data (𝐷), 𝜌model (𝜙), 𝜌constraints (𝐶), 𝜌hardness (𝐷,𝜙,𝐶) ] .

Dataset features. We encode the dataset with its number of in-
stances and features: 𝜌data (𝐷) = [rows(𝐷), features(𝐷)] . The ex-
periments in Section 6.3 show that some of the FS strategies do not
scale well either for the number of instances or features.
Model features. We one-hot encode the classification model as
𝜌model (𝜙) =

⋃Φ
𝜙
𝜙 == 𝜙, where Φ is the list of all classification

models that have been used in training.
Constraint features. To encode the constraints, we need to cap-
ture two types of information. The intuition here is that the model
will have a better estimation of the performance of a selection strat-
egy, first if the selected user constraints are similar to those of a
training ML scenario, and second if the possibility of satisfying the
given constraints is similar.

Encoding the former is straightforward. We simply encode all
user-provided constraints (in our benchmark 6 constraints) in a fea-
ture vector: 𝜌constraints (𝐶) =

⋃𝐶
𝑐 𝑐. All these constraints might af-

fect the choice of the FS strategy. For instance, a backward selection
strategy might require too much time to reach feature subsets that
require very few features or a compute-intensive ranking-based
strategy might require more time than the specified maximum
search time. By encoding the maximum search time constraint as a
feature, the model will predict rather fast selection strategies. Note
that the optimizer can be extended to any custom constraint.

To capture how likely it is that a given constraint set can be
satisfied for the current ML scenario, we design a feature based
on the intuition that the distance of the measured metrics on the
original dataset to the desired constraint thresholds can serve as
priors for this purpose. However, if the dataset has many instances,
computing these distances for the full dataset is time-intensive.
Instead of evaluating the full dataset, we evaluate all features for a
small class-stratified sample using cross-validation. This approach
is called subsampling-based landmarking [25]. So, we encode the
ML task by adding the difference of the 6 constraints with their
corresponding cross-validation metric 𝑐𝑣𝑐 estimate to the feature
vector: 𝜌hardness (𝐷,𝜙,𝐶) =

⋃𝐶
𝑐 𝑐𝑣𝑐 (𝐷,𝜙) − 𝑐.

The described solution ensures fast deployment because it re-
quires only inference and landmarking to answer a query. Second,
it is extendable both for constraints and FS strategies. For a new
constraint, we simply add one more feature to the vector. For a new
FS strategy, we simply train one more classification model. So, in
case of a new constraint or FS strategy, the system would generate
a large number of ML scenarios for these new options and execute
them. Then, it would retrain the optimizer.

6 EXPERIMENTS

We performed extensive experiments to answer the following ques-
tions: (1) Which FS strategy can cover the most ML scenarios? (2)
Which FS strategy is the fastest in satisfying an ML scenario? (3)
How does HPO affect FS? (4) Can all FS strategies satisfy constraints
based on novel metrics, such as EO and safety? (5) How does the

Table 2: Experimental datasets.

Dataset Instances Attributes Features Sensitive Attribute

Traffic Violations 1578154 34 2075 Race
AirlinesCodrnaAdult 1076790 30 746 Gender
Adult 48842 15 108 Gender
KDD Internet Usage 10108 69 526 Gender
IPUMS Census 8844 57 274 Gender
Telco Customer Churn 7043 20 45 Gender
COMPAS 5278 14 19 Race
Students 3892 35 39 Gender
Thyroid Disease 3772 30 54 Gender
Primary Biliary Cirrhosis 1945 19 723 Gender
Titanic 1309 12 422 Gender
Social Mobility 1156 6 39 Race
German Credit 1000 21 61 Nationality
Indian Liver Patient 583 11 11 Gender
Irish Educational Transitions 500 6 18 Gender
Arrhythmia 452 280 334 Gender
Brazil Tourism 412 9 22 Gender
Primary Tumor 339 18 41 Gender
Diabetic Mellitus 281 98 98 Gender

choice of the model affect FS? (6) Can we combine FS strategies to
yield faster results or higher coverage? (7) Does the Dfs optimizer
reach a higher coverage than the single strategies?

6.1 Evaluation Metrics

To show the effectiveness of different Dfs strategies, we are in-
terested in two main characteristics. First, how many of the ML
scenarios can a given strategy cover? Second, how many times is
a given strategy the fastest in satisfying a given ML scenario? We
calculate the coverage for the strategy 𝑠 and the set of ML scenar-
ios Z as follows: coverage(𝑠,Z) = | {𝑍 |𝑍 ∈Z∧𝑠 (𝑍 )≠∅} ||Z | . For each ML
scenario 𝑍 , we count how often the strategy 𝑠 finds a solution and
does not yield the empty set. To compute the coverage, we divide
this number by the total number of ML scenarios. Note that the
maximum search time is a mandatory constraint. So, the strategies
have to find a solution within the corresponding specified time limit.
To show the speed of different Dfs strategies, we report the fraction
of ML scenarios where a given strategy yields a result the fastest,
denoted as Fastest. To evaluate the effectiveness of our Dfs opti-
mizer, we follow the leave-one-out cross-validation approach by
always considering the experiments of one dataset as the test set.

For each FS strategy, we would like to evaluate the performance
for a given constraint set on a given dataset with a given classifi-
cation model. However, the space of constraints is infinite. Even
if we would discretize each constraint into 𝜐 values, for 6 con-
straints, 19 datasets, 𝜐 = 5, 16 strategies, 3 classification models,
1 hour maximum search time, in the worst case, it would take
|constraints|𝜐 ∗ |datasets| ∗ |models| ∗max search time = 51 years
for the experiments of one single strategy.

To estimate the performance for the entire query space, Sel-
tenreich et al. [59] propose to leverage domain-aware randomized
fuzzing. Following this approach, we pick a random constraint
set and let all described strategies search for features that satisfy
this constraint set on a randomly picked dataset. We generated
three versions of this benchmark - undergoing four weeks of pure
computation time:
(1) with default model hyperparameters (1500 ML scenarios),
(2) with model HPO (3318 ML scenarios),
(3) and considering F1 as utility subject to the other specified con-

straints (957 ML scenarios) - also includes HPO.
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For HPO, we optimize for F1 score using grid search. For LR, we
optimize the regularization strength 𝐶 ∈ {10𝑛 ∥𝑛 ∈ [−2 : 3]}. For
NB, we optimize the smoothing variable var_smoothing ∈ [1𝑒−12 :
1𝑒 − 6]. For DT, we optimize the maximum tree depth 𝑡𝑑 ∈ [1 : 7].

Listing 1 shows the template that we use to sample from the
ML scenario space. First, we sample the classification model. Then,
we sample the constraints. There are mandatory and optional con-
straints. Minimum accuracy and maximum search time are manda-
tory. We sample the minimum F1 score uniformly in the range
between 0.5 and 1. We do not sample values lower than 0.5 because
no user is interested in features that yield a model that is less ac-
curate than random guessing. For the maximum search time, we
uniformly sample between 10 seconds and 3 hours. Note that cov-
erage is strictly bound by the maximum allowed search time. The-
oretically, one could make the sampling of maximum search time
data dependent. However, before evaluating a set of constraints,
there is no way of knowing the runtime. Approaches could require
only 1 minute or not terminate at all. For the sake of feasibility, we
limited the maximum amount of time to 3 hours.

Listing 1: Constraint space template.

from hyperopt import hp
c o n s t r a i n t _ s p a c e = {
' c l a s s i f i e r ' : hp . c ho i c e ( ' LR ' , 'DT ' , 'NB ' ] ) ,
' min_f1 ' : hp . uni form ( ' v a l ' , 0 . 5 , 1 ) ,
' max_time ' : hp . uni form ( ' v a l ' , 1 0 , 3 ∗ 60 ∗ 6 0 ) ,
' max_ f ea tu r e s ' : hp . c ho i c e ( ' ? ' , [ 1 , hp . uni form ( ' v a l ' , 0 , 1 ) ] ) ,
' min_EO ' : hp . c ho i c e ( ' ? ' , [ 0 , hp . uni form ( ' v a l ' , 0 . 8 , 1 ) ] ) ,
' m in_ s a f e t y ' : hp . c ho i c e ( ' ? ' , [ 0 , hp . uni form ( ' v a l ' , 0 . 8 , 1 ) ] ) ,
' p r i v a cy_𝜀 ' : hp . c ho i c e ( ' ? ' , [ None , hp . lognorma l ( ' v a l ' , 0 , 1 ) ] ) }

For optional constraints, we randomly choose whether to use the
constraint or not. For the maximum feature fraction, we uniformly
sample a value between 0 and 1. For EO and safety, we sample
only between values of 0.8 and 1 because, for instance, if a user is
interested in enforcing fairness, she won’t be interested in setting a
constraint where the groups differ more than 20%. The same applies
to safety. For differential privacy, we pick 𝜀 based on the log-normal
distribution with 𝜇 = 0 and 𝜎 = 1. In our evaluation, we focus on the
ML scenarios where at least one FS strategy found a feature set that
satisfied all constraints. However, we do provide an analysis of the
cases that could not be satisfied by any FS strategy in Section 6.3.
Datasets. We chose the binary classification datasets based on
whether they are openly accessible, e.g. on OpenML [67], and
whether they include a sensitive attribute that can be considered for
fairness. This way, we found 19 datasets that satisfied these require-
ments. Dfs is independent of the ML task and can be also used for
regression and clustering. We focus on classification in our experi-
mental study, which allows us to have a comparable set of metric
implementations. The datasets vary with respect to the number
of numeric features, categorical features, and missing values. We
removed textual attributes because we focus on categorical and nu-
merical features in this study. The adjusted datasets can be found in
our repository [45]. Table 2 lists these datasets with basic statistics
and the sensitive attribute that we consider for the fairness metric
equal opportunity. Using stratification, we split each dataset into a
training, validation, and test set in a 3:1:1 ratio. For each dataset,
we apply standard preprocessing transformations such as one-hot
encoding for all categorical attributes. For all numerical attributes,
we apply min-max scaling and mean value imputation. Scaling

Table 3: Fraction of Fastest cases and coverage per strategy

Strategy Default Parameters Parameter Optimization

Strategy Fastest Fraction Coverage Fraction Fastest Fract. Coverage Fract.

Original Features 0.01 ± 0.04 0.14 ± 0.10 0.05 ± 0.04 0.21 ± 0.13

SBS(NR) 0.00 ± 0.01 0.27 ± 0.17 0.02 ± 0.03 0.28 ± 0.17
SBFS(NR) 0.03 ± 0.05 0.27 ± 0.15 0.03 ± 0.04 0.28 ± 0.16
RFE(Model) 0.01 ± 0.03 0.29 ± 0.16 0.02 ± 0.03 0.37 ± 0.19
TPE(MCFS) 0.01 ± 0.03 0.34 ± 0.21 0.01 ± 0.03 0.38 ± 0.23
TPE(ReliefF) 0.02 ± 0.05 0.47 ± 0.24 0.02 ± 0.03 0.48 ± 0.23
TPE(Variance) 0.15 ± 0.15 0.49 ± 0.22 0.06 ± 0.07 0.48 ± 0.21
TPE(NR) 0.05 ± 0.06 0.50 ± 0.17 0.07 ± 0.07 0.49 ± 0.20
NSGA-II(NR) 0.08 ± 0.08 0.53 ± 0.16 0.08 ± 0.06 0.49 ± 0.19
TPE(MIM) 0.04 ± 0.05 0.49 ± 0.23 0.04 ± 0.05 0.53 ± 0.26
SA(NR) 0.06 ± 0.07 0.49 ± 0.19 0.07 ± 0.04 0.54 ± 0.17
ES(NR) 0.10 ± 0.09 0.55 ± 0.27 0.11 ± 0.10 0.55 ± 0.31
TPE(Fisher) 0.06 ± 0.06 0.49 ± 0.25 0.04 ± 0.05 0.56 ± 0.24
TPE(𝜒2) 0.10 ± 0.08 0.53 ± 0.19 0.06 ± 0.06 0.57 ± 0.21
SFS(NR) 0.09 ± 0.10 0.60 ± 0.25 0.10 ± 0.10 0.58 ± 0.30
SFFS(NR) 0.10 ± 0.08 0.62 ± 0.22 0.12 ± 0.12 0.59 ± 0.31
TPE(FCBF) 0.09 ± 0.11 0.50 ± 0.20 0.11 ± 0.22 0.60 ± 0.22

DFS Optimizer 0.14 ± 0.14 0.65 ± 0.14 0.11 ± 0.05 0.70 ± 0.18

Oracle 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

accelerates the convergence of LR and imputation removes any
missing values that many ML models cannot process. We choose
this preprocessing pipeline because it is standard, simple, and does
not affect the interpretability of the resulting model. For instance,
if we would choose to apply feature hashing [42] or principal com-
ponent analysis [50], the meaning of the features would be lost in
the corresponding embedding. In this paper, we focus on FS and
leave feature construction as future work.

6.2 Usage of Strategies

Our benchmark comprises 16 FS strategies that we described in
Section 4. We provide all these strategies in our repository [45].
We implemented ES(Nr), Sfs(Nr), Sffs(Nr), Sbs(Nr), Sbfs(Nr),
and Rfe(Model). We computed the Fisher score, Fcbf, and Mcfs
rankings using the implementation provided by Li et al. [37]. For
ReliefF, we leveraged the implementation by Urbanowicz et al. [65]
and used the default number of nearest neighbors of 10. For Mim
and the 𝜒2 score, we leverage the Scikit-learn library [51].

For the FS strategies that optimize the binary decision vector,
Bergstra et al. [7] implemented SA and Tpe. Blank et al. [8] imple-
mented NSGA-II. We follow the configuration by Xue et al. [70] to
set the NSGA-II parameter population size to 30.

As the classificationmodel for the optimizer, we choose a random
forest classifier with default parameters and class balancing. For
subsampling-based landmarking, we choose a sampling size of 100
instances which correspond to the size of the smallest training set in
our benchmark. We run the experiments on Ubuntu 16.04 machines
with 28 2.60 GHz cores and 264 GB memory.

6.3 Strategy Effectiveness

We evaluate the strategies’ performance first aggregated across
all datasets and then fine-grained by datasets, constraint types,
classification models, and finally analyze which strategies come
closest to satisfy constraints even if they fail.
Aggregated Effectiveness. Table 3 reports statistics for coverage
and comparative runtime of each FS with and without model HPO.
It reports the average coverage fraction of satisfiable ML scenarios
per strategy. It also shows the average fraction of cases where a
strategy was fastest to cover a scenario. At a first glance, none of the
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Figure 4: Strategies’ coverage for individual datasets.

FS strategies reaches 100% coverage. We also report the result for
using the original complete feature set without FS. Without HPO,
only 14% of the ML scenarios can be covered with this feature set
because most constraints, in particular Min EO, and Min Privacy,
require a smaller subset of features. With HPO, the fraction slightly
increases because optimization helps to achieve a higher F1 score.
HPO. In general, we see that in most cases the coverage between
the strategies under default parameters and under HPO differs only
by a few percentage points. For FS strategies that require only few
model evaluations, HPO leads to higher coverage. Ranking strate-
gies, such as Tpe(Fcbf) and Tpe(Fisher), clearly benefit from HPO.
Rfe(Model)’s coverage increases by 8% because it bases its ranking
on the model’s scores. If the model can fit the data better, the rank-
ing fits the data better and therefore leads to higher coverage. FS
strategies that require more evaluations, such as Sffs and Sfs, lose
a few percentage points in coverage. As most selection strategies
benefit from HPO and most users expect the model to be tuned, we
report for all further experiments the results based on HPO.
Coverage. Ranking strategies that provide a concise and light-
weight ranking, such as Tpe(Fcbf), Tpe(𝜒2), and Tpe(Fisher) reach
a coverage higher than 50%. The forward selection strategies Sfs
and Sffs also achieve very high coverage of 58% and 59%, respec-
tively. Most constraints, such as min privacy, max feature set size,
and min robustness, require a small set of features. For the same
reason, backward selection strategies, such as Sbs(Nr), Sbfs(Nr),
and Rfe(Model), show poor coverage because, for small feature sub-
sets, they have a high runtime that exceeds the specified maximum
search time. In particular, they are slower than other approaches
because they do not benefit from the optimizations based on the
maximum feature set size. Our experiments confirm Pudil et al.s’

finding [54] that the floating alternatives Sffs and Sbfs of the se-
quential FS approaches Sfs and Sbs, respectively, provide more
optimal solutions. The selection strategies that operate on a binary
feature decision vector, such as Tpe(Nr), SA(Nr), and NSGA-II(Nr),
perform similarly and solve 49% - 54% of the ML scenarios. Mcfs
shows a poorer coverage of 38% because of the time-intensive com-
putation of the spectral embedding.
Fastest. Table 3 also reports that no strategy is always the fastest
in finding a satisfying feature set. The best strategy with respect
to finishing fastest is Sffs(Nr), which is the fastest strategy in 12%
of the ML scenarios on average because it starts with very few
features. Therefore, training a model takes less time in the begin-
ning. Further, Sffs(Nr) can greedily find feature sets that satisfy
challenging constraints, such as fairness or safety. In case that con-
straints require a large number of features, ranking strategies, such
as Tpe(Fcbf), are the fastest.
Oracle. Table 3 contains also the results of an oracle that always
chooses the fastest strategy for a given ML scenario. Therefore, it
satisfies all possible ML scenarios and achieves 100% coverage. Since
the best single strategy Tpe(Fcbf) achieves only 60% with a large
standard deviation of 22%, there is a huge potential of choosing the
right strategy depending on the ML scenario. In Section 6.6, we
further explore this direction by evaluating our Dfs optimizer.
Dataset-Specific Effectiveness. Figure 4 provides the strategies’
performance broken down to the dataset level. Indeed, the strate-
gies’ performance is dataset dependent. In particular, the dimen-
sions of a dataset affect the strategies’ performance. For instance,
the ranking computation of Mcfs, Relieff, Fisher, Mim, and Fcbf
are not scalable and therefore, find no feature sets on Traffic, which
has the highest number of instances. For the datasets with a large



Pr
ep
rin

t:
M
ar
ch

23
,2
02
1

Table 4: Distance to constraints for unsuccessful cases and

the achieved F1 score for the utility-driven benchmark.

Strategy Distance for Validation Distance for Test Mean Normalized F1 score

Original Feature Set 0.43 ± 0.44 0.44 ± 0.45 0.16 ± 0.09
SBS(NR) 0.31 ± 0.44 0.38 ± 0.44 0.36 ± 0.22
SBFS(NR) 0.31 ± 0.44 0.38 ± 0.44 0.36 ± 0.23
RFE(Model) 0.29 ± 0.43 0.34 ± 0.43 0.30 ± 0.15
TPE(MCFS) 0.36 ± 0.63 0.39 ± 0.60 0.46 ± 0.22
TPE(ReliefF) 0.32 ± 0.62 0.35 ± 0.59 0.43 ± 0.24
TPE(Variance) 0.21 ± 0.41 0.25 ± 0.40 0.48 ± 0.22
TPE(NR) 0.18 ± 0.42 0.25 ± 0.41 0.62 ± 0.22
NSGA-II(NR) 0.19 ± 0.42 0.26 ± 0.41 0.62 ± 0.23
TPE(MIM) 0.27 ± 0.55 0.31 ± 0.52 0.45 ± 0.23
SA(NR) 0.19 ± 0.43 0.25 ± 0.41 0.63 ± 0.21
ES(NR) 0.16 ± 0.30 0.20 ± 0.31 0.73 ± 0.17
TPE(Fisher) 0.31 ± 0.59 0.33 ± 0.56 0.43 ± 0.24
TPE(𝜒2) 0.20 ± 0.40 0.24 ± 0.40 0.48 ± 0.20
SFS(NR) 0.15 ± 0.30 0.20 ± 0.31 0.75 ± 0.17
SFFS(NR) 0.15 ± 0.30 0.20 ± 0.31 0.77 ± 0.16

TPE(FCBF) 0.22 ± 0.45 0.26 ± 0.44 0.49 ± 0.23

number of features, such as Traffic and KDD Internet Usage, back-
ward selection strategies, such as Sbs, Sbfs, and Rfe, perform poorly
because they require more evaluations to reach feature sets with
few features. Furthermore, the information distribution across fea-
tures affects the strategies’ performance. For instance, for datasets
with few critical features, such as IPUMS Census, COMPAS, Titanic,
and German Credit, the forward selection approaches Sfs and Sffs
achieve the highest coverage. For the other datasets, the ranking-
based strategies Tpe(Fcbf), Tpe(𝜒2), and Tpe(Fisher) achieve the
highest coverage. For instance, 𝜒2 works better in the predomi-
nantly categorical dataset Adult.
Optimizing for Utility. In some cases, the user might not have
constraints for all dimensions and rather wants to optimize for
some utility subject to certain constraints. We conduct another
extensive benchmark and specify the F1 score as utility. To report
a score that is comparable across ML scenarios 𝑖 and datasets 𝑑 , we
compute the normalized mean F1 score for each FS strategy 𝑠:

normalized mean F1 score(𝑠) =
𝐷∑
𝑑

(
𝐼∑
𝑖

𝐹1(𝑑, 𝑖, 𝑠)/𝑚𝑎𝑥 (𝐹1(𝑑, 𝑖))/𝐼 )/𝐷

As for some ML scenarios, e.g. specified constraints, it is easier to
achieve a high F1 score than for other ML scenarios, for each ML
scenario, we divide the achieved F1 score of a given strategy by the
best F1 score that was achieved by any FS strategy. As the datasets
also differ in difficulty, we calculate the mean normalized F1 score
per dataset and then report the mean across datasets as shown
in Table 4. Sffs(Nr) achieves the highest normalized F1 score. It
fully utilizes the given maximum search time for a larger space of
representations and outperforms Tpe(Fcbf), which achieved the
best coverage for the constraint satisfaction use case.
FailureAnalysis. To understand theML scenarioswhere all strate-
gies fail, we compare the value distributions for the constraint sets
where Dfs succeeds and where it fails. The comparison shows that
the failed ML scenarios require significantly higher accuracy, EO,
and privacy thresholds compared to the successful scenarios. For
example, for the Adult dataset, Dfs could not satisfy any ML sce-
nario with a minimum F1 score constraint higher than 63%. These
thresholds are again dataset dependent.

Furthermore, we analyzed whether the maximum search time is
the issue of why the strategies cannot find a solution. The sequential
forward selection strategy Sfs(Nr) finishes in 22% of the failed
scenarios, Tpe(𝜒2) finishes even in 62% of the cases, and exhaustive

Table 5: The coverage if a constraint was specified.

Strategy Min EO Max Feature Set Size Min Safety Min Privacy

Original Feature Set 0.29 0.00 0.00 0.11
SBS(NR) 0.29 0.00 0.00 0.22
SBFS(NR) 0.29 0.00 0.00 0.22
RFE(Model) 0.14 0.14 0.00 0.11
TPE(MCFS) 0.57 0.14 0.17 0.33
TPE(ReliefF) 0.29 0.29 0.00 0.11
TPE(Variance) 0.57 0.29 0.17 0.44
TPE(NR) 0.43 0.43 0.33 0.22
NSGA-II(NR) 0.43 0.43 0.17 0.33
TPE(MIM) 0.43 0.43 0.00 0.22
SA(NR) 0.43 0.43 0.17 0.11
ES(NR) 0.71 0.43 0.50 0.56
TPE(Fisher) 0.29 0.43 0.00 0.22
TPE(𝜒2) 0.29 0.29 0.00 0.22
SFS(NR) 0.71 0.43 0.67 0.67
SFFS(NR) 0.71 0.57 0.83 0.78

TPE(FCBF) 0.43 0.43 0.17 0.22

Table 6: Model-dependent coverage

Strategy LR NB DT

Original Feature Set 0.22 0.12 0.18
SBS(NR) 0.29 0.16 0.26
SBFS(NR) 0.29 0.16 0.25
RFE(Model) 0.44 0.16 0.27
TPE(MCFS) 0.39 0.29 0.32
TPE(ReliefF) 0.46 0.43 0.36
TPE(Variance) 0.46 0.40 0.38
TPE(NR) 0.51 0.32 0.42
NSGA-II(NR) 0.53 0.31 0.41

Strategy LR NB DT

TPE(MIM) 0.52 0.43 0.42
SA(NR) 0.59 0.30 0.40
ES(NR) 0.46 0.46 0.47
TPE(Fisher) 0.56 0.41 0.39
TPE(𝜒2) 0.55 0.42 0.40
SFS(NR) 0.47 0.48 0.50
SFFS(NR) 0.48 0.49 0.52

TPE(FCBF) 0.60 0.41 0.45

search finishes in 14% of the cases. So, at least in 14% of the cases, the
constraints were impossible to satisfy because no possible feature
combination could satisfy the given ML scenario.

For the failed cases, we also analyze how close the approaches
got to the thresholds in Table 4. We report the average distance
to the constraints as defined in Equation 1 on the validation set
and test set for the failed cases. Again, forward selection strategies,
such as Sfs(Nr) and Sffs(Nr), outperform the other strategies and
come closest to solving the constraints on average.
Constraint-Specific Effectiveness. The strategies’ performance
is not only highly dependent on the dataset at hand but also on the
constraint set at hand. To understand which constraints are harder
or easier to satisfy, we report the aggregated coverage of scenarios
that had one optional constraint in common. Min accuracy and
max search time are mandatory constraints and always specified.
Table 5 shows that the forward selection strategies Sffs(Nr) and
Sfs(Nr) outperform all other strategies for the different constraint
types. For safety and privacy constraints, Sffs and Sfs achieve
significantly higher coverage than the other strategies. The reason
is that these constraint types require very small feature sets that
forward selection strategies uncover the fastest. However, it is
surprising that accuracy-optimized ranking-based FS strategies,
such as Tpe(Fcbf), can satisfy constraints based on novel metrics,
such as safety, EO, and privacy, to a similar degree as the highly
flexible multi-objective NSGA-II(Nr) strategy. One reason is that
flexibility introduces the danger of overfitting. Another reason is
that the ranking priors that are designed for accuracy, e.g. mutual
information, can be also used to prune biased features or reduce
the feature set for privacy reasons.
Model-Specific Effectiveness. The strategies’ performance is
also affected by the classification model that is chosen. Table 6
shows the test coverage across the three different classification
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Table 7: Percentage of feature sets found using LR that sat-

isfy constraints under a DT, a NB, and a SVM model.

Strategy Min Accuracy Min EO Min Safety

DT (SFFS) 0.93 ± 0.18 0.95 ± 0.14 0.63 ± 0.34
NB (SFFS) 0.85 ± 0.30 0.79 ± 0.34 0.67 ± 0.38
SVM (SFFS) 0.90 ± 0.26 0.81 ± 0.32 0.88 ± 0.25

models LR, NB, and DT. While for all three models, forward selec-
tion Sffs leads to high coverage, TPE(Fcbf) achieves the highest
coverage for LR because both Fcbf and LR assume linearity of
independent variables. The same argument applies to Tpe(𝜒2).

Now, we describe two other notable differences among models.
First, NB achieves significantly lower coverage for Rfe than the
other models. The reason is that NB does not provide a notion
of feature importance and therefore, we have to additionally cal-
culate the feature ranking using feature permutation importance
that leads to significant runtime overhead that might exceed the
specified maximum search time. Second, LR performs better for
strategies that operate on a binary feature decision vector, such as
Tpe(Nr), SA(Nr), and NSGA-II(Nr), because they benefit from more
evaluations and LR is the least computationally intensive model.
Reusability of Feature Sets across Models. As we enforce the
constraints on the feature level, another interesting question is
whether the constraints hold also when we train a different model
on the same feature set. To ensure that this is true, instead of
evaluating the features using only one model, we could always
use multiple models. However, this would require a computational
overhead. In this experiment, we test whether features that were
found by an FS strategy for an LR model are also useful for other
models, such as DT, NB, and SVM models. We evaluated whether
the constraints were still satisfied or not. The results of this analysis
are presented in Table 7. As some constraints, such as the number of
features are inherently model-independent, we focused this study
on accuracy, EO, and safety constraints. Due to space limitations,
we choose Sffs(Nr) because it showed the highest coverage across
constraints (Table 5). The other numbers can be found online [45].

In general, for the majority of the ML scenarios, the constraints
obtained through LR also hold for other models. The result suggests
that, in typical ML development cycles, it is possible to change the
model without searching again for features that satisfy constraints.
This can be useful in highly iterative development pipelines. How-
ever, there are small differences across constraints. For instance,
safety against adversarial examples is more model dependent than
accuracy and EO. Thus, the resulted number of satisfied ML scenar-
ios was comparably lower.

6.4 Impact of Constraint Type

We analyze the impact of constraints with the following constraint
pairs: accuracy×{ EO, privacy, number of features, safety against
adversarial examples }. For all these constraint pairs, we apply
all strategies for all combinations in a specified grid on the Adult
dataset and report the fastest strategy of 5 runs in Figure 5. The
omitted areas inside each chart were covered by the adjacently
covered approaches.

First, we see that strategy performance varies across charts, i.e.,
constraint types, and within charts, i.e., constraint thresholds. For
safety constraints, Tpe(Variance) is the best choice for the Adult
dataset. Selecting the features with the highest entropy seems to

Table 8: Combinations maximizing coverage and fastest.

top-k Objective: Coverage Objective: Fastest
Combination Achieved Combination Achieved

1 TPE(FCBF) 0.60 ± 0.22 SFFS(NR) 0.12 ± 0.12
2 + SFFS(NR) 0.83 ± 0.11 + TPE(FCBF) 0.23 ± 0.21
3 + TPE(NR) 0.88 ± 0.08 + ES(NR) 0.34 ± 0.22
4 + TPE(MIM) 0.92 ± 0.06 + SFS(NR) 0.44 ± 0.28
5 + SA(NR) 0.94 ± 0.04 + NSGA-II(NR) 0.52 ± 0.26
6 + TPE(𝜒2) 0.96 ± 0.03 + TPE(NR) 0.59 ± 0.23
7 + TPE(Variance) 0.97 ± 0.03 + SA(NR) 0.66 ± 0.22
8 + NSGA-II(NR) 0.98 ± 0.02 + TPE(Variance) 0.72 ± 0.19
9 + SFS(NR) 0.99 ± 0.02 + TPE(𝜒2) 0.78 ± 0.16
10 + TPE(Fisher) 0.99 ± 0.02 + Original Feature Set 0.82 ± 0.13
11 + ES(NR) 0.99 ± 0.01 + TPE(MIM) 0.87 ± 0.11
12 + TPE(ReliefF) 1.00 ± 0.01 + TPE(Fisher) 0.90 ± 0.08
13 + SBFS(NR) 1.00 ± 0.01 + SBFS(NR) 0.93 ± 0.07
14 + TPE(MCFS) 1.00 ± 0.00 + SBS(NR) 0.95 ± 0.05
15 + TPE(ReliefF) 0.97 ± 0.04
16 + RFE(Model) 0.99 ± 0.03
17 + TPE(MCFS) 1.00 ± 0.00

reduce the success of adversarial attacks. For feature set size and
privacy constraints, Tpe(Variance) is the fastest for less restrictive
constraint sets, i.e. F1 score < 0.59. However, for more restrictive
constraints sets (upper right in the charts), i.e. the respective Pareto
front, ranking strategies with more advanced priors are better. For
instance, Tpe(𝜒2) considers the relationship to the target class,
Tpe(Fcbf) additionally considers redundancies among features, and
Tpe(Mim) considers the information that is shared between features
and the target. We see that Tpe(Variance) is the fastest for EO < 0.81.
Higher EO constraints are predominantly satisfied by approaches,
such as Tpe(Nr) and SA(Nr), that can prune specific biased features
and are not bound to a ranking.

In conclusion, ranking-based approaches, such as Tpe(𝜒2),
Tpe(Fcbf), and Tpe(Mim), that were mostly designed for accuracy
perform well if the metric favors reduction and compression of the
feature vector. This is the case for metrics, such as feature set size,
privacy, and safety. However, if the metric requires the selection
strategy to prune specific features that are unrelated to accuracy,
such as biased features in the case of EO, accuracy-optimized rank-
ings fail for high thresholds, strategies that consider a larger search
space, such as Tpe(Nr) and SA(Nr), perform better.

6.5 Strategy Combination Effectiveness

Instead of searching the feature subsets just with one strategy, one
could run multiple strategies in parallel. The user might be inter-
ested in fast answering or high coverage.We report the combination
of the top-k strategies that lead to the fastest results or the highest
coverage across datasets in Table 8. The reported numbers assume
embarrassingly parallel execution without interference or reuse
opportunities. Therefore, this approach can be further optimized
e.g., by cashing common computations [69].

The best strategy with respect to coverage is Tpe(Fcbf). Adding
the sequential FS strategy Sffs(Nr) shows the highest benefit be-
cause it can satisfy more diverse and restrictive constraints. If we
add the Tpe(Nr), we gain 5% in coverage on average because it
covers diverse constraints and does start with a small number of
features. Using 14 strategies, we yield 100% coverage. The strategies
Sbs(Nr) and Rfe(Model) did not find any feature sets that cannot
be covered by those 14 strategies. The best strategy with respect to
fast answers is Sffs(Nr) for ML scenarios with high constraints. For
easily satisfiable ML scenarios, Tpe(Fcbf) is fastest. Running both
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Figure 5: Fastest strategy for 4 constraint pairs on the Adult dataset.

Table 9: Meta-learning accuracy across strategies.

Strategy Precision Recall F1 score

SBS(NR) 0.67 ± 0.33 0.50 ± 0.29 0.53 ± 0.28
SBFS(NR) 0.66 ± 0.30 0.52 ± 0.26 0.54 ± 0.23
RFE(Model) 0.69 ± 0.28 0.56 ± 0.26 0.57 ± 0.23
TPE(MCFS) 0.49 ± 0.36 0.41 ± 0.34 0.36 ± 0.27
TPE(ReliefF) 0.56 ± 0.30 0.58 ± 0.34 0.55 ± 0.30
TPE(Variance) 0.61 ± 0.29 0.65 ± 0.26 0.58 ± 0.23
TPE(NR) 0.63 ± 0.25 0.64 ± 0.25 0.58 ± 0.21
NSGA-II(NR) 0.63 ± 0.22 0.71 ± 0.23 0.64 ± 0.21
TPE(MIM) 0.59 ± 0.29 0.70 ± 0.35 0.62 ± 0.29
SA(NR) 0.71 ± 0.18 0.73 ± 0.15 0.70 ± 0.13
ES(NR) 0.55 ± 0.33 0.62 ± 0.37 0.56 ± 0.32
TPE(Fisher) 0.67 ± 0.28 0.66 ± 0.32 0.63 ± 0.28
TPE(𝜒2) 0.71 ± 0.21 0.76 ± 0.18 0.69 ± 0.16
SFS(NR) 0.57 ± 0.33 0.67 ± 0.36 0.59 ± 0.32
SFFS(NR) 0.58 ± 0.33 0.69 ± 0.38 0.61 ± 0.33
TPE(FCBF) 0.69 ± 0.22 0.74 ± 0.26 0.68 ± 0.20

strategies in parallel results for 11% more cases the fastest result. In
conclusion, parallelization is an effective approach to solve more
ML scenarios or to solve ML scenarios faster. For instance, running
5 strategies in parallel leads to 94% coverage or 52% fastest answers.

6.6 Potentials of the Dfs Optimizer

Table 3 shows that our meta-learning-based Dfs optimizer improves
the coverage of the best single strategy Tpe(Fcbf) by 10% on aver-
age and reduces the standard deviation by 4%. The Dfs optimizer
achieves high coverage more consistently across datasets as we
see in Figure 4. When Sffs(Nr) achieves poor coverage compared
to other strategies, e.g. for Adult and KDD Internet Usage, our
optimizer chooses the strategy that achieves consistently good cov-
erage. Even though the Dfs optimizer is optimized for coverage, it
chooses the fastest strategy in 11% on average, which is close to the
fastest strategy Sffs(Nr). The optimizer learns one model for each
FS strategy to predict whether it will satisfy a given ML scenario.
In Table 9, we report the precision, the recall, and the F1 score for
this classification task per strategy. The averaged F1 scores are fair
with 70% at most. However, when each model contributes enough
information, together they are accurate enough the outperform the
single-best strategy and lead to much more consistent coverage.

7 CONCLUSION AND FUTUREWORK

We performed an extensive empirical study to evaluate existing
FS strategies for Dfs. Based on these experiments, we investigated
whether we can learn an optimizer that automatically chooses the
strategy that is the most promising in satisfying the user-specified

constraints. We also examined how the parallelization of these
strategies can improve speed and coverage. Our experimental re-
sults led us to the following conclusions. First, Dfs is an intuitive
and simple framework for enforcing constraints. The underlying
FS algorithm is however highly dependent on the constraints and
datasets, which motivates the use of a holistic optimizer. Our meta
learning-driven Dfs optimizer improves on the coverage of the best
FS algorithm by 10%. There are several promising future directions:
• Meta learning. We presented a meta learning-driven Dfs opti-
mizer that can choose the best strategy for a fraction of cases. One
possible direction to improve meta learning is to allow dynamic
selection of strategies during runtime. One could learn an addi-
tional model that estimates after each feature evaluation whether
the chosen strategy is likely to converge within the user-specified
search time. If this estimate is pessimistic, we can switch to a
different strategy. The new strategy could be warm-started based
on the experience gained in previous runs.
• Feature construction. It might not be enough to only select
features from the given dataset to satisfy all constraints [21, 22].
In some cases, one could additionally generate new features.
Feature construction can help to uncover nonlinear relationships
between the original features.
• AutoML. We showed that with only 5 out of 16 strategies, we
can cover 94% of the Dfs-satisfiable ML scenarios. This insight
allows the AutoML approaches [23, 60] to significantly decrease
the search space for FS. Data science frameworks, such as Sys-
temDS [9] could use these insights to incorporate and optimize
FS components. Further, one can extend Dfs to declarative Au-
toML where we not only select features but also models and
hyperparameters to satisfy user-specified constraints.
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